
Задание 2 по курсу «Молекулярная физика» в 2024 г. (срок сдачи 20 мая)

- **1.** Для некоего физически однородного и изотропного тела известно уравнение состояния f(p,V,T) = 0 и зависимость внутренней энергии от температуры и объема, U = U(T,V). Найти разность теплоемкостей $c_p c_V$. Ответ получить для случая, когда уравнение состояния в явном виде относительно своих переменных не разрешается. Проверить ответ для идеального газа.
- **2.** Моль идеального газа с теплоемкостью c_V находится в цилиндре с адиабатическими стенками и с поршнем, который может перемещаться без трения. Создаваемое поршнем давление скачком меняется от значения p_1 до значения p_2 . Найти объем и температуру газа после того, как установится термодинамическое равновесие, если начальная температура T_1 а начальный объем V_1 .
- **3.** Теплоизолированный сосуд разделен подвижной теплопроводящей перегородкой на два отсека с объемами V_1 и V_2 . В каждом отсеке при температуре T_0 находится одинаковый идеальный газ с одинаковым числом частиц N. Найти максимальную работу, которую можно получить при движении перегородки.
- **4.** Один моль H_2O с температурой 25 °C охлаждается до 0 °C и замерзает. Все тепло, полученное охлаждающей машиной, работающей с максимальной теоретически допустимой эффективностью, передается другому молю H_2O при 25 °C в результате чего его температура повышается до 100 °C Сколько молей H_2O переходит в пар при 100 °C Теплота испарения при 100 °C равна 9730 κ ал/моль. Теплота плавления льда при 0 °C равна 1438 κ ал/моль.
- **5.** Работающий на угле тепловой двигатель с водяным охлаждением приводит в действие холодильную машину. Холодильная машина отнимает теплоту от окружающей среды и отдает ее воде в отопительной системе помещения. Одновременно вода в отопительной системе служит холодильником теплового двигателя. Определить теоретическое количество тепла, которое получает отапливаемое помещение от сжигания 1 кг угля. Удельная теплота сгорания угля q = 8000 ккал/кг, температура в котле двигателя $t_1 = 210$ °C, температура воды в отопительной системе $t_2 = 60$ °C, грунтовой воды $t_3 = 15$ °C.

Для изображенного на рисунке цикла с идеальным газом в качестве рабочего тела на каждом участке найти работу и теплоту, и определить К.П.Д. цикла. Заданы теплоемкость c_V и температуры T_1 и T_2 , на участке 1-2 давление прямо пропорционально объему.

- **6.** Теплоизолированный цилиндрический сосуд разделен поршнем пренебрежимо малой массы на две равные части. По одну сторону поршня находится идеальный газ с массой M, молекулярным весом μ и молярными теплоемкостями c_V и c_P , не зависящими от температуры, а по другую сторону поршня создан высокий вакуум. Начальная температура и давление газа T_0 и p_0 . Поршень отпускают, и он, свободно двигаясь, дает возможность газу заполнить весь объем цилиндра. После этого, постепенно увеличивая давление на поршень, медленно доводят объем газа до первоначальной величины. Найти изменение внутренней энергии и энтропии газа при таком процессе.
- **7.** Выразить изменение температуры свободно расширяющегося одноатомного газа через начальный и конечный объемы и константы уравнения Ван-дер-Ваальса для газа.
 - 8. Для газа Ван-дер-Ваальса:
 - (1) доказать, что теплоемкость c_V зависит только от температуры;
 - (2) найти выражение для внутренней энергии и энтропии;
 - (3) найти уравнение адиабаты в переменных p и V.
- **9.** Для некоторого газа давление p, объем V и внутренняя энергия U связаны соотношением pV = gU, где g константа. Найти уравнение адиабаты в переменных p и V.
- **10.** Известна свободная энергия как функция температуры и объема: $F(T, V) = \alpha T \cdot \exp(-\beta V/T) + \gamma T + \delta$, где α , β , γ , δ постоянные. Получить уравнение адиабаты в переменных p, T.
- **11.** Задачу 1 решить для случая, когда известно только уравнение состояния f(p,V,T)=0. Рассмотреть частный случай газа Ван-дер-Ваальса.