Внутренняя энергия, работа, теплота

Внутренняя энергия термодинамической системы есть полная кинетическая и потенциальная энергия ее молекул за вычетом кинетической и потенциальной энергии ее центра масс.

U = U(T,V, none cun mяжеести,...)

$$U= v \frac{3}{2}RT$$
 Одноат. газ $U= v c_v T$

Внутренняя энергия U(T,V...) является функцией состояния — то есть вполне определенной функцией от T,V....

Ее изменение при малых изменениях dT, dV,... является полным дифференциалом:

$$dU(T,V) = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$

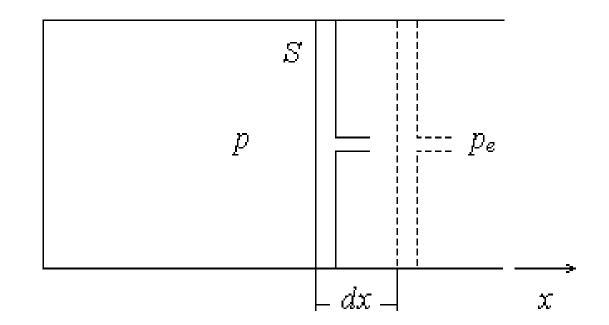
Для ид. газа

$$dU(T,V) = \nu c_V dT$$

Работа:

Газ в сосуде под поршнем при расширении совершает работу.

$$\delta A = Fdx = pSdx = pdV$$



Величина δA не является полным дифференциалом. A зависит от пути перехода системы из начального состояния в конечное — функцией состояния не является. A>0, если система совершает работу, A<0, если мы работаем.

$$A_{12} = \int_{V_1}^{V_2} p(V, T) dV$$

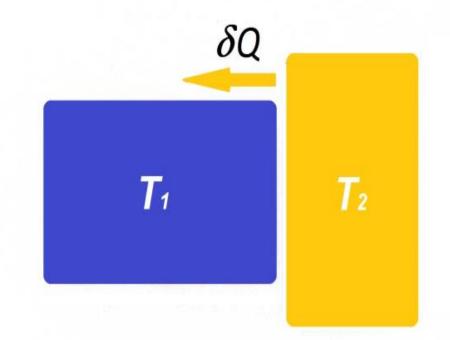
При
$$T = const$$

$$A_{12} = \int_{V_1}^{V_2} p dV = vRT \int_{V_1}^{V_2} dV / V$$

$$= vRT \ln(V_2 / V_1)$$

Теплота:

Энергия, передаваемая при тепловом контакте.



Теплота Q > 0, если система ее получает, и Q < 0, если она ее отдает. Функцией состояния не является. Малую ее величину обозначаем δQ .

Первое начало термодинамики

(закон сохранения энергии)

$$U_2 - U_1 = Q - A$$

 $Q = U_2 - U_1 + A$

В дифференциальной форме

$$dU = \delta Q - \delta A$$

$$dU = \delta Q - pdV$$

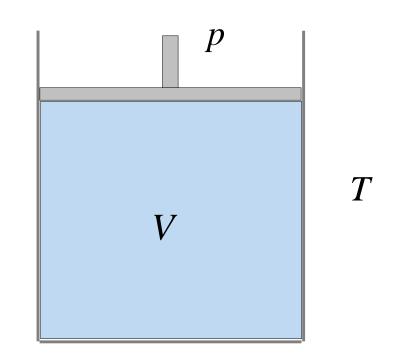
$$\delta Q = dU + pdV$$

Теплоемкость процесса

$$c = \left(\frac{\delta Q}{dT}\right)_{\text{процесс}}$$

Теплоемкость зависит от процесса

Объем, температура и давление в разных процессах по-разному изменяются



При постоянном объеме
$$c_V = \left(\frac{\partial U}{\partial T}\right)_V$$

Произвольный процесс

$$\delta Q = dU(T, V) + pdV = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV + pdV$$

$$\delta Q = c_V dT + \left[\left(\frac{\partial U}{\partial V} \right)_T + p \right] dV$$

$$c = c_V + \left[\left(\frac{\partial U}{\partial V} \right)_T + p \right] \frac{dV}{dT}$$

Изохорический процесс (V = const)

$$\frac{dV}{dT} = 0$$

$$c_V = \left(\frac{\partial U}{\partial T}\right)_V$$

Изобарический процесс (p = const)

$$c_{p} = c_{V} + \left[\left(\frac{\partial U}{\partial V} \right)_{T} + p \right] \left(\frac{\partial V}{\partial T} \right)_{p}$$

Идеальный газ: $(\partial U / \partial V)_T = 0$

$$V = RT/p \qquad \Longrightarrow \qquad \left(\frac{\partial V}{\partial T}\right)_p = \frac{R}{p}$$

$$c_p - c_V = R$$
 соотношение Майера

Изотермический процесс $c_T = \pm \infty$

Адиабатический процесс: $\delta Q = 0$. $c_{a\partial} = 0$.

В идеальном газе

Для одного моля первое начало термодинамики:

$$\delta Q = c_V \, dT + p dV.$$
 $\delta Q = 0$, тогда $c_V \, dT + p dV = 0.$

Так как
$$T = pV/R$$
, то $dT = (pdV + Vdp)/R$.

$$c_V p dV + c_V V dp + R p dV = 0$$

$$\gamma = c_p/c_V \qquad c_V + R = c_p$$

$$\gamma p dV + V dp = 0 \qquad \frac{dp}{p} = -\gamma \frac{dV}{V}$$

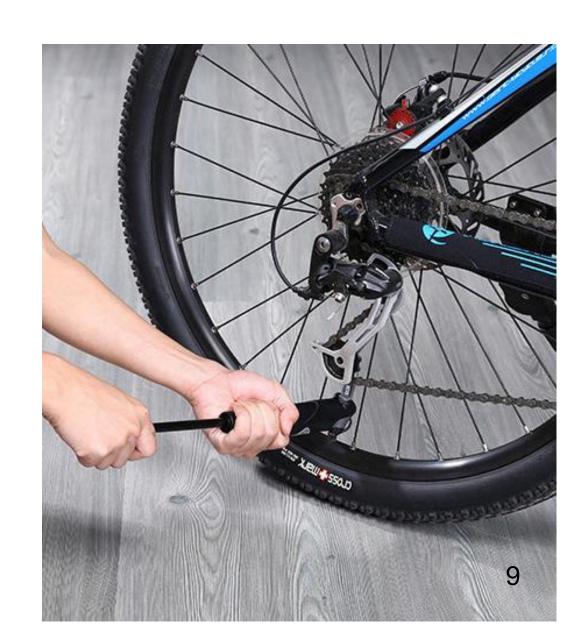
Решение этого уравнения $pV^{\gamma} = const$

$$pV^{\gamma} = \text{const}$$

Это есть уравнение адиабатического процесса в идеальном газе (уравнение Пуассона).

Величина γ называется показателем адиабаты. Всегда $\gamma > 1$. Для одноатомного идеального газа $\gamma = 5/3$, для двухатомного $\gamma = 7/5$.

$$pV = RT$$
 $TV^{\gamma-1} = const$



Политропический процесс в идеальном газе

Процесс называется политропическим, если он происходит при постоянной теплоемкости. Частными случаями являются изохорический ($c = c_V$), изобарический ($c = c_p$), изотермический ($c = \infty$) и адиабатический (c = 0) процессы.

$$(c-c_V)dT = pdV \qquad dT = (pdV + Vdp)/R \quad R = c_p - c_V$$
$$(c-c_V)(pdV + Vdp) = (c_p - c_V)pdV$$
$$(c_p - c)pdV + (c_V - c)Vdp = 0$$

$$n = \frac{c_p - c}{c_V - c} \qquad npdV + Vdp = 0$$

Решение $pV^n = \text{const.}$

$$pV^n = const$$

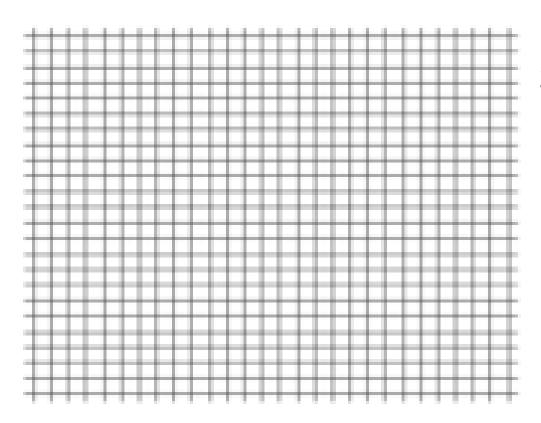
$$n = \frac{c_p - c}{c_V - c}$$

Для адиабаты c=0. Тогда $n=\gamma$

Величина n называется показателем политропы

$$n=0$$
 $p=const$ изобара $c=c_p$ $n=1$ $pV=const$ изотерма $c=\infty$ $n=\gamma$ $pV^\gamma=const$ адиабата $c=0$ $N=\infty$ $V=const$ изохора $c=c_V$

Скорость звука в газе



Звук – волны сжатия-разрежения

Из курса механики:

$$v_{36yk} = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{adua6}}$$

Так как $\rho=mN/V$, то из $pV^{\gamma}=const$ следует, что p=const ρ^{γ}

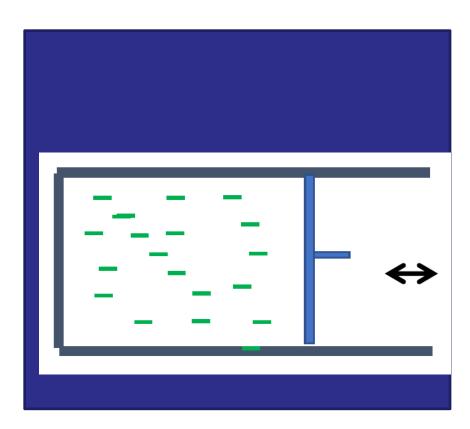
$$\left(\frac{\partial p}{\partial \rho}\right)_{a\partial ua\delta} = \gamma \ const \ \rho^{\gamma-1} = \gamma \frac{p}{\rho} \qquad v_{36} = \sqrt{\gamma \frac{p}{\rho}}$$

$$v_{369\%} = \sqrt{\frac{p}{\rho}} = \sqrt{\frac{pV}{mN}} = \sqrt{\frac{NkT}{mN}} = \sqrt{\frac{kT}{m}} = \sqrt{\frac{\gamma\pi}{8}}\sqrt{\frac{8kT}{\pi m}} \cong 0.8\overline{v}$$

Циклы, преобразование теплоты в работу

Тепловая машина, цикл Карно

Тепловой машиной называется устройство, позволяющее производить работу за счет потребляемого тепла.



$$A = vRT \cdot \ln(V_{\kappa o \mu e \gamma \mu}/V_{\mu a \gamma a \pi b \mu}) > 0$$

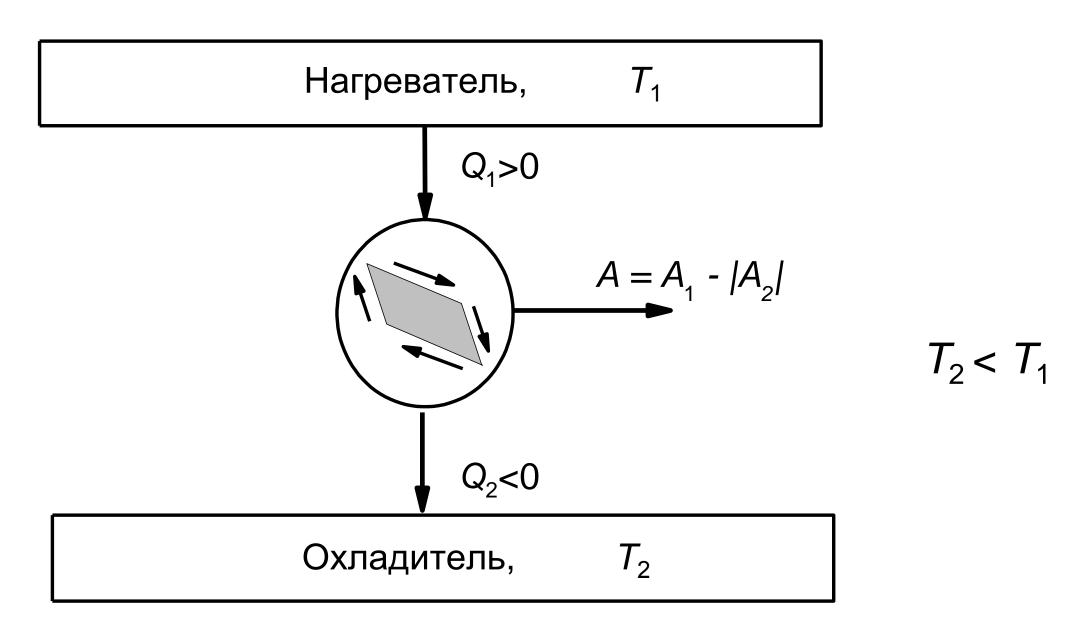
Расширение при постоянной температуре приводит к положительной работе

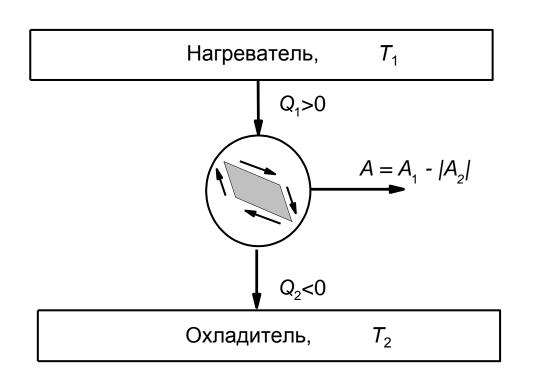
Термостат (тепловой резервуар), T = const

Чтобы потом снова извлечь работу, после расширения должно быть сжатие. На это надо затратить работу, A < 0.

Чтобы баланс был положительный, сжатие надо проводить при меньшей температуре.

Простейшая схема тепловой машины:

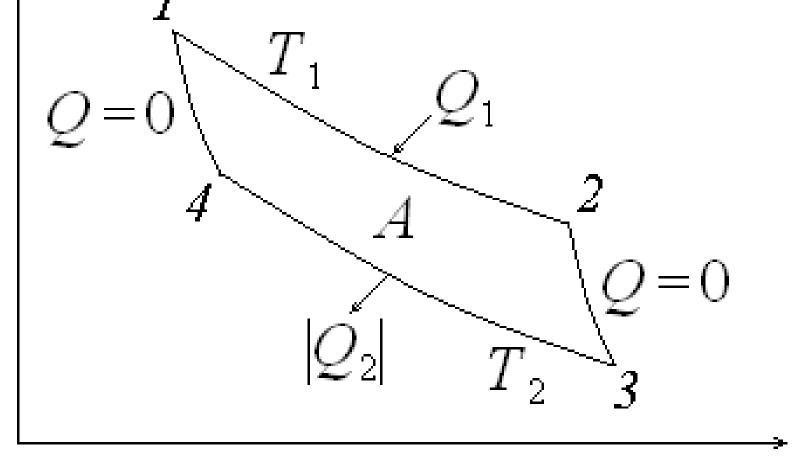




Цикл Карно

p

Две изотермы и две адиабаты



Сади Карно — французский физик и математик (1796-1832)

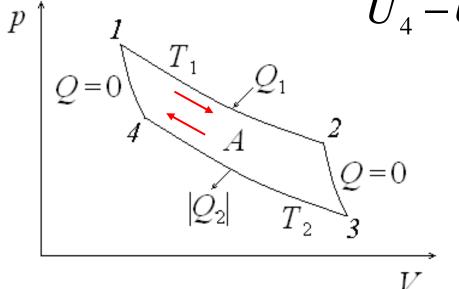
При полном прохождении цикла

$$\Delta U = Q - A = 0$$

$$Q_1 + Q_2 = A$$

Идеальный газ

$$U_2 - U_1 = 0$$
 $Q_1 = A_{12} = vRT_1 \cdot \ln(V_2/V_1) > 0.$
 $U_4 - U_3 = 0$ $Q_2 = A_{34} = vRT_2 \cdot \ln(V_4/V_3) < 0.$



$$A \partial u a \delta a m a$$
 $TV^{\gamma-1} = const$

$$T_1 V_2^{\gamma - 1} = T_2 V_3^{\gamma - 1}$$
$$T_1 V_1^{\gamma - 1} = T_2 V_4^{\gamma - 1}$$

Делим равенства друг на друга, получаем, что $V_2/V_1 = V_3/V_4$

$$Q_2 = -vRT_2 \cdot \ln(V_2/V_1).$$

КПД есть отношение суммарной совершенной работы A к полученному от нагревателя количеству теплоты Q_1 :

$$\eta = \frac{A}{Q_1} = \frac{Q_1 + Q_2}{Q_1} = 1 - \frac{|Q_2|}{Q_1}$$

$$\eta = 1 - \frac{T_2}{T_1}$$

Важное соотношение:

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0$$

Термодинамика:

Физическая Основные физические законы

(Первое начало, цикл Карно и др.)

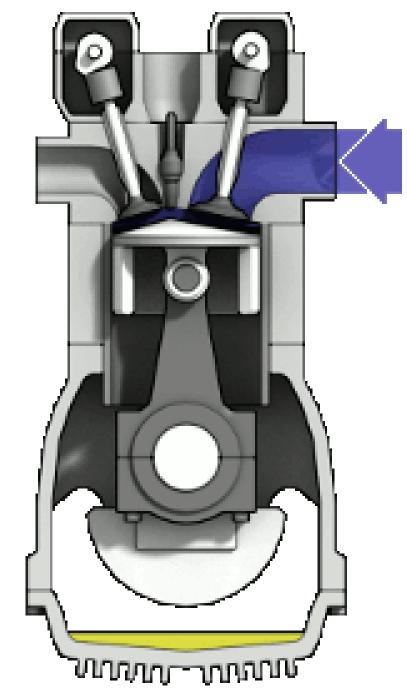
• Техническая Тепловые машины разных типов

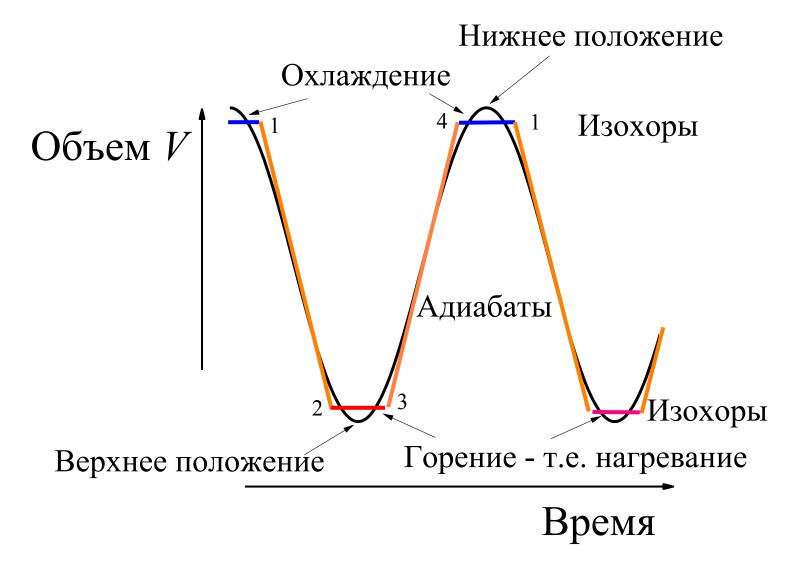
• Химическая Характеристики химических

веществ и реакций

Двигатель внутреннего сгорания – цикл Отто

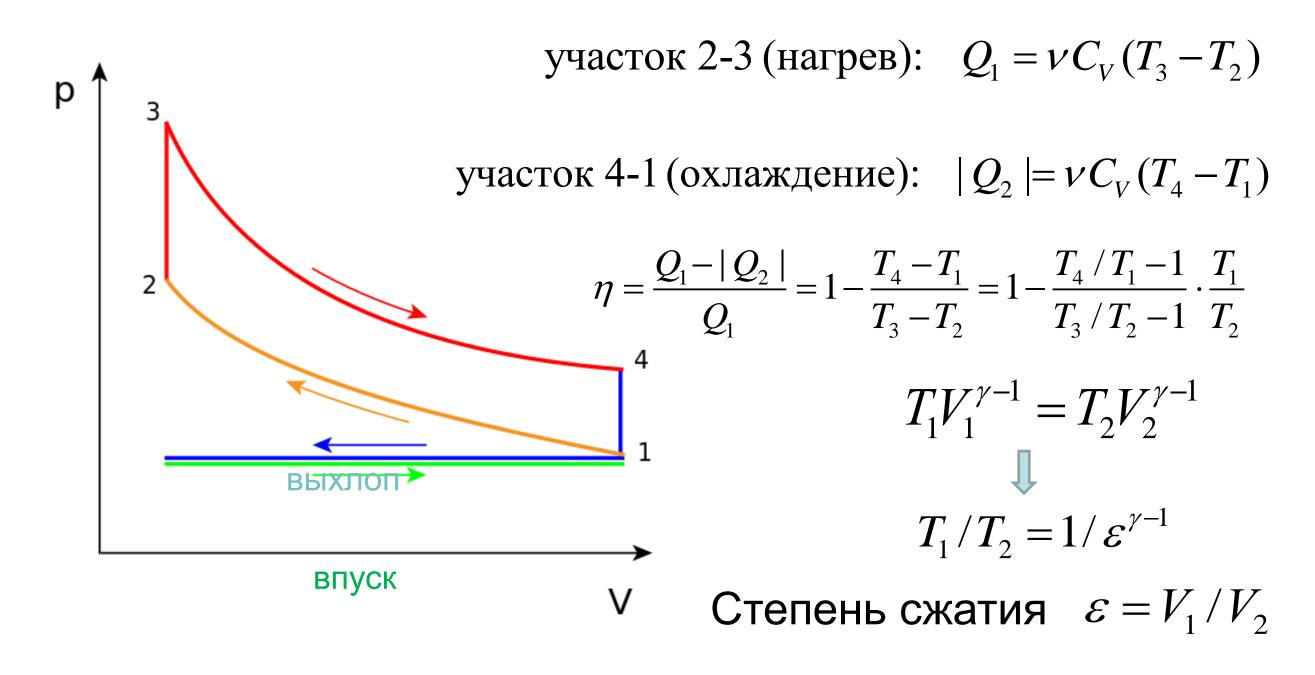
Тепло поступает от сгорания топливной смеси в рабочем цилиндре.





4 такта – впуска, сжатия, расширения и выпуска

P-V-диаграмма для цикла Отто



$$T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$$

$$T_4 V_4^{\gamma - 1} = T_3 V_3^{\gamma - 1}$$

$$egin{aligned} V_1 &= V_4, \ V_2 &= V_3 \end{aligned}$$

$$\frac{T_4}{T_1} = \frac{T_3}{T_2}$$

$$V_1 = V_4,$$
 $T_1 = \frac{T_3}{T_1} = \frac{T_3}{T_2}$ $\eta = 1 - \frac{T_1}{T_2} = 1 - \frac{1}{\varepsilon^{\gamma - 1}}$

$$\eta = 1 - \frac{1}{\varepsilon^{\gamma - 1}}$$

КПД увеличивается при увеличении степени сжатия. Ее однако не удается увеличить выше порядка 7 — 12 из-за эффекта детонации. Для топлива с высоким октановым числом детонация происходит при более высоких степенях сжатия.

Изо-октан CH₃ H₃C CH₃ 100 H_3C H_2 Н-гептан

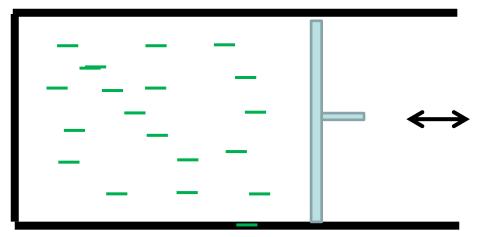
До конца 19-го - начала 20-го веков: ручной труд

Илья Репин. Бурлаки на Волге. 1870-1873.

Василий Перов. Тройка. 1866

Клод Моне. Гавань. 1864

Тепловые машины все изменили



Современная теплоэлектростанция

Паровой котел

Дизель-генератор

Круизный лайнер Queen Mary 2

Обратный цикл: холодильная машина, тепловой насос

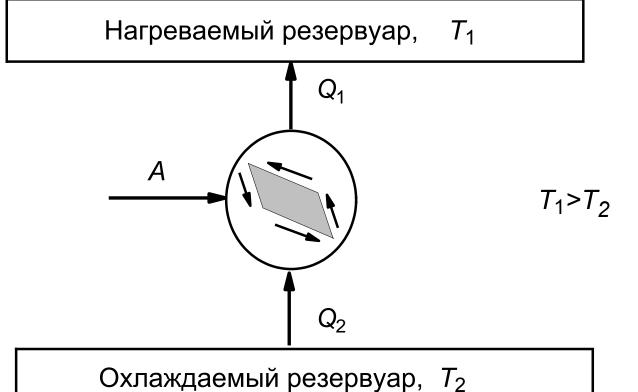
Тепловая машина

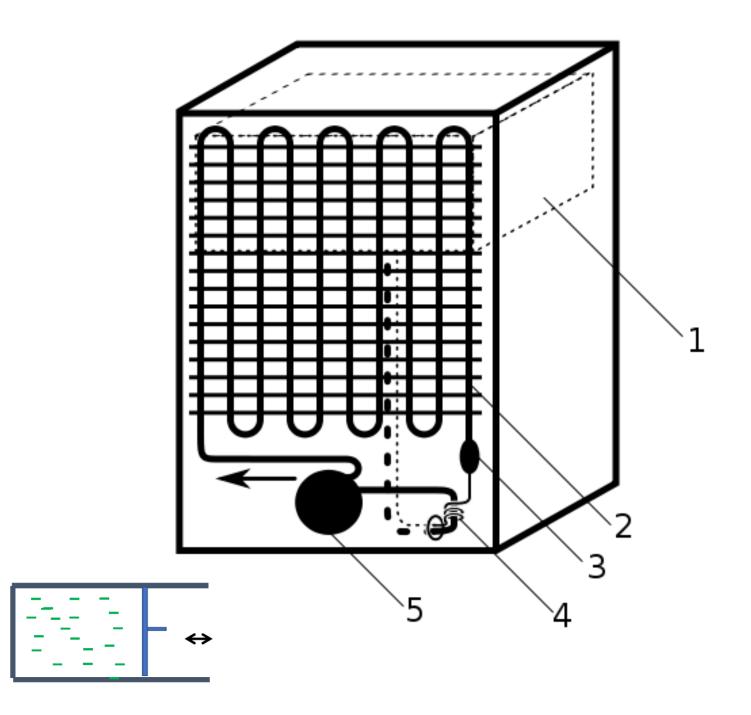
Нагреватель, T_1 Q_1 A>0 Q_2

Охладитель,

 T_2

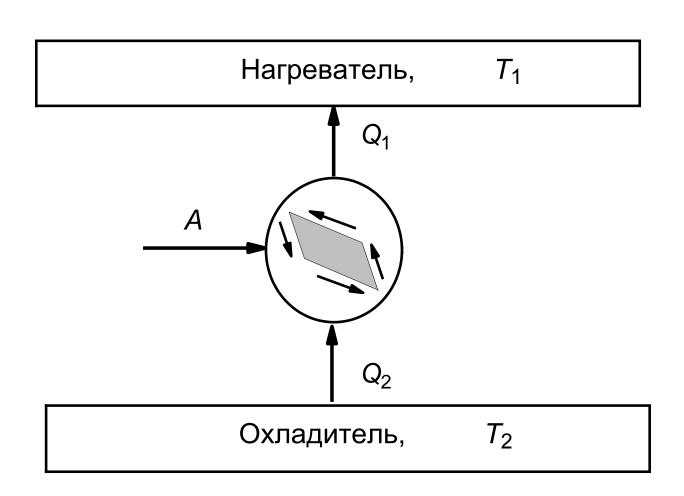
Холодильная машина





- 1. Испаритель (охладитель с температурой T_2)
- 2. Конденсатор (нагреватель с температурой T_1)
- 3. Фильтр-осушитель
- 4. Капилляр и теплообменник
- 5. Компрессор

Если цель — охлаждение (изъятие теплоты Q_2), тогда это холодильная машина (холодильники, морозильные камеры, рефрижераторы).

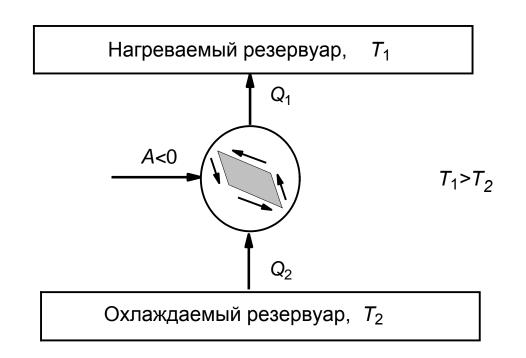


Если цель нагревание (получение теплоты Q_1), тогда это тепловой насос.

Может быть и смешанный тип, когда целью является как охлаждение, так и нагревание, — таковыми являются кондиционеры воздуха с функцией его нагрева.

Холодильная машина:

Холодильный коэффициент $K_{xon} = Q_2/(-A)$.



$$A = Q_2 + Q_1 \qquad \frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0$$

$$K_{xon} = \frac{Q_2}{(-A)} = -\frac{Q_2}{Q_1 + Q_2} = -\frac{1}{\frac{Q_1}{Q_2} + 1} = \frac{T_2}{T_1 - T_2}$$

$$0 \le K_{xox} < \infty$$